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Based upon previous work [G. Meier, B. Momper, and E. W. Fischer, J. Chem. Phys. 97, 5884
(1992)], we report light scattering experiments of the binary polymer blend poly (dimethylsiloxane),
PDMS (N =225), and poly (ethylmethylsiloxane), PEMS (N =325), with N being the degree of polymer-
ization at the critical composition ¢, pgms=0.456 in the temperature range 8 X 107 % <e<4X1072 with
e=T—T,/T being the reduced temperature. Using an Ornstein-Zernike scattering law we extract the
static structure factor S(q=0) from the angular dependence of the scattered intensity thereby taking the
correction for turbidity into account which has become necessary due to the proximity to T, in contrast
to the previous study. From an analysis of S(q=0) with a crossover function describing the change
from mean field to three-dimensional Ising behavior close to the critical point, we calculate the Ginzburg
number Gi which now quantitatively allows us to identify the Ising regime for € < Gi. In this region, the
strong fluctuation limit, we obtain the critical exponents y=1.24+0.02, v=0.62+0.01, and
7=0.036+0.002 in agreement with values from renormalization group calculations for the three-
dimensional Ising universality class. From the angular dependence of the Rayleigh linewidth we obtain
the critical exponent x, which determines the divergence of the viscosity while approaching the critical
point to be x, =0.061+0.03 in agreement with theory. We further establish the crossover of the relaxa-
tion rate I' in the mode coupled regime (§>R,N'/?) from F'«<¢” for g <1to '« e " for g£> 1 thereby
considering the weak divergence of the viscosity. The proposed crossover of I" from I' 0<q4£”” (non-
mode coupled) for gR, <N '?to T « g% " (mode coupled) for gR, > N~'"2 was not observed due to
the small background contribution. We conclude that a polymer mixture where viscoelastic effects are
small behaves for £ < Gi exactly like a simple ordinary binary liquid belonging to the model H of Hohen-
berg and Halperin. Anomalies in the viscosity exponent x,, as has been reported for polymer-solvent
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systems [Phys. Rev. B 12, 368 (1975)], were not detected.

PACS number(s): 05.70.Jk, 36.20.—r, 64.60.Fr, 78.47.+p

I. INTRODUCTION

The static properties of critical polymer blends in the
one phase region have already been investigated by
small-angle x-ray scattering [1,2], synchrotron radiation
[3], and mainly by small-angle neutron scattering [4—16].
Light scattering experiments have been employed further
to study dynamical critical behavior. However, there are
only two studies [17,18] dealing with this topic so far
opening a rich new field. In all cited references it was
found that polymer blends may be treated as mean field
systems using the random phase approximation (RPA)
developed in this case by de Gennes [19] if the molecular
weights of the constituents are high and the distance
from the critical point is large. However, close to the
second order phase transition, a crossover to the three-
dimensional Ising behavior occurs, which has been mani-
fested by a large variety of experiments [9,10,13-18].
Recently, it was further made possible to describe this
crossover quantitatively [20,21] on the basis of a cross-
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over function proposed by Kiselev and co-workers
[22,23]. From such an analysis the Ginzburg num-
ber Gi, which is a measure of the magnitude of the fluc-
tuations in the system, can be deduced which separates
the mean field region from the Ising regime. Based upon
our previous work [18] of a poly (dimethylsiloxane)-
poly(ethylmethylsiloxane) (PDMS-PEMS) blend, we in-
tend in this study of the same system (however, here the
total N differs, being 10% less) to concentrate only on the
Ising regime, both in the static and dynamic properties of
the system. In that region where &, the correlation length
of order parameter fluctuations, is expected to be in the
order of £>R,N 172 (where R, is the radius of gyration
of the polymer coil), the polymeric nature of the system is
lost since the only relevant length is &, which largely
exceeds structural aspects. So one may naively argue that
such a system may be treated as a simple binary liquid.
Then, consequently, this restriction to the Ising regime
(where mode-coupling occurs) in a wide sense releases us
from using arguments based upon the RPA. Naturally,
we try to avoid items, such as the Flory-Huggins )y pa-
rameter or mean field critical temperature, since they
seem to be unsuitable to describe the physics for € <<Gi.
This treatment is along the line already opened up in
Refs. [20 and 24] and was further supported by Binder by
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Monte Carlo simulations [25]. However, we intend to
avoid the RPA more rigorously.

Despite the fact that we observe Ising-like behavior for
€ <Gi, the scattering pattern may be described by an
Ornstein-Zernike law [26,27]. Distinct deviations are
marked for g£>>1, which we do not reach in our experi-
ments.

Furthermore, it is interesting to compare our viscosity
scaling results with those recently obtained from a
polymer-solvent system [28]. This is considered to
behave also like the Ising regime. Here considerable de-
viations from the divergence of the viscosity have been
found [29]. On the basis of this viscosity correction, our
results may be further compared with recent data by Mi-
yashita and Nose [30] also on a polymer-solvent system.
They have found deviations from the modified Kawasaki
scaling function. It seems to be important to find out
whether polymer blend systems in the strong fluctuation
limit behave differently than polymer-solvent systems
that also fall into the Ising universality class.

In this context, the discussion raised by Tanaka [31]
seems to be notable, because he doubts that polymer sys-
tems belong to the same universality class as classical
fluids, namely, the so-called model H of Hohenberg and
Halperin [32]. What governs that is a proposed kinetic
coupling between the stress field (~ viscoelasticity) and
the order parameter. We shall try to address this point in
the last section.

Finally, Binder has argued [33] that the crossover be-
tween the mean field and Ising should occur in the same
region as the crossover between nonmode coupled and
mode coupled dynamics, a fact that was confused in ear-
lier experimental [17,18] and theoretical studies [34]. We
shall try to give experimental evidence that this conjec-
ture seems to be correct on the basis of our data.

The paper is organized in the following way: Sec. IT A
is a theoretical reminder concerning the static properties
on the basis of the space correlation function of order pa-
rameter fluctuations. Section II B deals with the dynamic
aspects especially with the viscosity divergence, the scal-
ing function, the identification of various regimes depend-
ing on whether g¢£ is larger or smaller than 1 and (ng_l)
is larger or smaller than V'N and the crossover between
these. Section III A is the experimental part followed by
III B describing the data treatment including the turbidi-
ty correction. Then in Sec. IV the results of the static
properties and in Sec. V the results of the dynamic prop-
erties are presented. We discuss and conclude with Sec.
VI.

II. THEORETICAL REMINDER

In this section, we give a short survey of the underlying
theoretical formalisms needed to discuss the issue further.
In the static part we basically refer to the book by Binney
et al. [35], whereas the dynamical aspects are illuminated
by Fredrickson [34] and further on reformulated and
corrected by Binder [33].

A. Statics

We start our reminder by considering the two point or-
der parameter [36] correlation function G'?(r). It mea-

sures the correlation between the concentration at two
points r; and r,,

G(r,—r):=G%(r)

=(¢ 4(r)pp(r))) —{d 4 )(dp) ,

where A4 and B are the polymer species. There is only
one independent correlation function in the system
G =G =—G3 =G?. The interesting question now
is, what is the form of G'?’ close to and at 7,,? At T, one
finds an asymptotic form for large » compared with inter-
molecular distances

(2.1)

G¥(r)x (r large ,T=T,) . (2.2)

rd —2+7
Here d is the dimensionality (d =3) and 7 is a critical ex-
ponent that basically describes the decay of correlations
at T,. For T#T,, G?(r) cannot be described by a sim-
ple power law, but,

r

(2.3)
§

Gz(noc—dlj;fl ] (r large, T#T,) .
r

However, it was found to be approximately correct to
write, if g£ is not too large [26], for G'¥(r) an Ornstein-
Zernike (OZ) form. In Eq. (2.3) a new length, the correla-
tion length &, is introduced. The order parameter fluctu-
ates in blocks of all sizes up to size &, but fluctuations
that are significantly larger than £ are rare. The tempera-
ture variation of § is given by

E=8k™", (2.4)

where v is the critical exponent of the correlation length
and €e=(T—T,)/T is the reduced temperature. We
would like to add a note on how the reduced temperature
is defined here. Usually e=(T—T,)/T for polymeric
systems, because the Flory-Huggins Y parameter has a
x¥< T~ dependence [8]. By that this definition of &
differs from the usual one used in the physics of critical
phenomena [37] (T —T,)/T.]. However, as one can
easily calculate, in the region of T'—7T, we encounter
here for € < Gi, no matter how ¢ is defined, the difference
between In[(T—T,.)/T] and In[(T—T,)/T,] is small
within the third decimal after the dot, hence inconse-
quential.

The experimentally accessible quantity is the Fourier
transformation of Eq. (2.1), the static structure factor
S(q),

S(q)=—al—3fd3rexpiq-rG(r) s (2.5)
where the factor @ ~3 is introduced to make S(q) dimen-
sionless. From S(q), the susceptibility S(q=0) is easily
obtained (i.e., by an Ornstein-Zernike plot [18]).
S(q=0):=S(0) shows a divergence as the system ap-
proaches the critical point, since at T=T,,

S TH0)=(1/kT ) dF /3¢4*)=0 where F is the free energy
of the system. The temperature variation of S(0) is given
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TABLE I. Values of the critical exponents v, ¥, and 7 from
renormalization group calculations for the three-dimensional Is-
ing case [38] and comparison with experiment (this study).

Theory Experiment
v 0.6310+£0.0015 0.62+0.01
1% 1.2390+0.0025 1.24+0.02
n 0.0375+0.0025 0.036+0.002
by
S(0)=S,e"7, 2.6)

where y is the critical exponent of the susceptibility. If
one solves Eq. (2.5) explicitly for the G(r) , as given by
Eq. (2.3) then the well-known OZ scattering law results in

S(q)=S(0)(1+g%»H™! 2.7)

which we may also write S(q)e(1/g2+£72). Now we
see easily that for T—T,, £— o yielding S(gq)wq 2 be-
ing the OZ scaling. On the other hand, the Fourier trans-
form using Eq. (2.2) gives S(g) < g¢" 2, which is a correc-
tion to scaling. On the basis of this result we may ac-
cordingly write in summary

S(q)=A4e""g(qf),

where g(g&) '=1+¢42&* for all practical cases here and
A is an amplitude that is defined when lim, _ ,g(x)=1.

The critical exponents 7, v, and y appearing in Egs.
(2.2), (2.4), and (2.6), respectively, as obtained from
theoretical calculations are listed in Table I and com-
pared with the experimentally obtained results from this
study.

(2.8)

B. Dynamics

The central quasielastic component in the spectrum of
scattered light is caused by the diffusive decay of concen-
tration fluctuations. Its decay rate I'(q) is given by [39]

_AWQ)
Ha=5@?

where A(q) is the Onsager coefficient and S (q) is the sus-
ceptibility of the system, diverging for T— T,. Note that
after inserting an OZ ansatz [Eq. (2.7)] for S(q), the criti-
cal slowing down (I’ goes to zero) of the system should
scale with

I'(q)=Bg*(1+q%*) <0(q*) ,

(2.9)

(2.10)

where the constant B may be expressed in terms of the
Rouse theory in our case [18,33]. The general form of
Eq. (2.9) remains valid even in the vicinity of the critical
point, however, then the Onsager coefficient has to be re-
normalized due to mode coupling effects [40,41]. This
stems from the fact that there long range order parameter
fluctuations occur that are transmitted by velocity fluc-
tuations. Generally, one can show theoretically that for
gR, <<1 the decay rate including mode coupling correc-
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tions for polymer blends is given by [34]

kT S(0) .- 1/2=27,2
= — +CR_N 2.11
oo S(q) (& P +CRN2E g 2.1
with F(x)=2[(x ~1—x 73)arctanx +x ~2] being Ferrell’s

scaling function [39], C being a constant in the order of
unity, and 7, being the macroscopic shear viscosity.

Now, the following cases may be discussed [33].

For gR, >>N ~'/? the form of Eq. (2.10) is recovered
and hence mode coupling corrections are unimportant.
However, for g&>>1 (strong fluctuation limit) and
gRg <<N~'/2 one gets I'(g)<(g&)>. In this, polymer
mixtures act like ordinary mixtures with respect to the
scaling behavior. Experimentally, the predicted depen-
dence of the decay rate «<g3 for £ <<1 in contrast to the
hydrodynamics case <« g? for € >>1 has already been ob-
served [17,18]. The cases in the limit g& <<1, which we
are not dealing with in this study, are further discussed
by Binder [33]. Furthermore, Binder theoretically
showed that the static crossover between mean field to Is-
ing behavior occurs in the same regime as the crossover
from mode coupled to nonmode coupled dynamics. Fig-
ure 1 displays all relevant findings schematically: The
main differences between Fig. 1 and the corresponding di-
agrams in Refs. [17] and [18] based on Fredricksons work
[34] is twofold: First, there is experimentally no crossover
between mean field to Ising at §=R,, as was erroneously
stated by Stepanek et al. [17], if the crossover is properly
analyzed using a crossover function [20]. However, at
§=R, another physical phenomena takes place, namely
the localization of individual coils which occurs when the

T 4
S/ I 3 . PX l’
1
Rg g9 € ’1’,
1 7
' L2 p -
; Nq4evx,, : // qg €N
Ginzbur
N 2+ ,"‘ - criteriong' 7
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4
4
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s
q°€
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1€
4
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/ W
Rg N"2
-1
(aRg)

FIG. 1. Schematic illustration of the various regimes for the
reduced relaxation rate I'* =(n/kT)T(q) in different regimes of
wavelength g ~! and correlation length £ after Binder [33]. In
this study we concentrate only on the upper right part of the di-
agram for gR, >N ~'/? thereby varying g& larger or smaller
than 1 and furthermore for £/R, > N'/? varying (R, ) larger or
smaller than N~!'72. Note, that throughout & 7=g+%0% jg
written instead of €°, which results from taking the divergence
of n, into account, which is not the case in Ref. [34]. The
Ginzburg criterion was confirmed using a crossover function
(see Sec. IV).
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effective potential, which is the Fourier transform of the
Hamiltonian describing the effective monomer-monomer
potential, changes sign [42]. Further consequences of
this effect are not considered in this paper. However, the
importance of it with respect to conformational proper-
ties of the blend under study (which are not important for
£ << 1<Gi) have been thoroughly analyzed and will be
published elsewhere [43].

Second, there is no mode coupling in the mean field re-
gime which results basically from the proper analysis of
the Ginzburg criterion. The previously experimentally
found crossover [18] from &” to &2 for £ <O. 1N1/2Rg is
not in agreement with Binder’s result [33]. However, the
experimental fact still remains what causes deviations
from the ¥ regime at large distances from 7,? Since here
we are only interested in the limit of strong fluctuations
this point is not discussed further.

In summary, we may observe dynamic crossover be-
tween g%e¥ to q3evx” at constant (ng)‘1 and further-
more at constant /R, the crossover between g% to
q3evx", possibly for low g data.

However, in the derivations so far [33,34], the weak
divergence of the viscosity has been neglected. It is taken
into account by

N, =n0(qoE) " , 2.12)

where g, is a system dependent amplitude that is related
to the background and the Debye cutoff [18,44]. 7, is the
bare viscosity coefficient and the critical exponent x, has
the value x, =0.065 [45]. It can be obtained [44] from
the angular dependence of the Rayleigh linewidth
I'(q)« qz°‘f. Then by extrapolation linearily to 7, we ob-
tain as the limiting value

z= lim z53=3+x, . (2.13)

c

Hence, in all equations appearing within the mode cou-
pled regime showing a €° term (Fig. 4 in Ref. [33]) we

have to substitute according to I‘(q)“n;1°<§“x"

«g m'=¢0%1 Then the basic equation for the reduced
linewidth T* [cf. Eq. (2.11)]

re— 6715 T'(q)
kT q3

is given by the scaling function derived by Burstyn et al.
(46]

(2.14)

F*Z%K(x)(1+b2x2)x"’/2

(2.15)
with R=1.027, b=0.55, x=g§&, and K(x)=3[1+x?
+(x3+x ~harctanx | being the Kawasaki function. The
constant R is a universal ratio of dynamic amplitudes and
its value depends on the theories involved. Siggia, Halpe-
rin, and Hohenberg et al. [45] predict R =1.20. We will
discuss these findings in connection with recent data ob-
tained from polymer-solvent systems [30] in Sec. V.
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III. EXPERIMENTAL SECTION
A. Light scattering experiment

1. Characterization of the polymers used

The synthesis of the polymers used in this study is de-
scribed elsewhere [47]. The molecular weights were
determined by light scattering from solutions in toluene
and the molecular weight distributions were measured by
gel permeation chromatography using calibration by
siloxane standards. The respective parameters are sum-
marized in Table II. Relevant parameters not differing
with N (index of refraction n, density p) are given in Ref.
[18].

2. Sample preparation

According to the theoretical (mean field) prediction
the critical volume fraction ¢. of PEMS is given
by ¢ pems =N poms /(N bpms + N piis ) =0.456.  Proper
amounts of polymers were dissolved in n-hexane and
filtered through Millipore filters (0.22 um) into a 20 mm
o.d. dust free light scattering cell. To remove the solvent,
the sample was held under vacuum for several days at
80°C. The cloud point was independently checked by a
polarization microscope to be a T=28.74°C. This value
is in agreement with the T, found for the previously stud-
ied system [18] on the basis of the T dependence of
Xo=2/N [47].

3. Apparatus

Light scattering experiments were performed in the
temperature range 8X107*<g<4X107% and in the
momentum transfer range q (¢ =4wn /Asin6/2, with 6
being the scattering angle) of 9.4X 1074<g/A™!
<3.6X1073 using a laser light scattering goniometer
from ALV (Langen, Germany). The temperature control
was achieved by a thermostat (Julabo F-30-MH) with a
precision of £0.01 K. The light source was an argon ion
laser (Spectra Physics model 165) operating at A =488
nm. The intensity of the primary beam (=10 mW) was
monitored with a photodiode in order to correct for fluc-
tuations in the laser power. The transmitted light was
also measured by another photodiode to calculate the
transmission (see below). Scattered light was detected us-
ing a photomultiplier (PM) (EMI 9863). Because of the
slow dynamics the intensity at each angle was integrated
over 6 min. Prior to measurements the sample was an-
nealed for 2 h to achieve thermal equilibrium. The mea-

TABLE II. Degree of polymerization N, molecular weight
My, and polydispersity © =My, /M, —1 of the polymers used in
this study.

Polymer N My u
PDMS 225 16800 0.06
PEMS 325 28800 0.06
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sured intensity was corrected for dark counts of the PM
tube, dead time of the electronic system, and the usual
angular dependence of the scattering volume. The align-
ment of the system in the whole 6 range with respect to
the intensity of toluene (R'©M"®=3.96X107% cm™! at
A=488 nm [48]) was reproducible within =1.5%. The
incident and the scattered laser beam were polarized per-
pendicular to the scattering plane, so that the geometry
of the measurement was the so-called V'V geometry. The
full autocorrelation function of order parameter fluctua-
tions were measured with an ALV-3000 correlator.

B. Data treatment

1. Turbidity correction

The usual relationship between structure factor and
light scattering intensity (see Sec. III B2) is only valid if
the effects of turbidity and multiple scattering can be ig-
nored. However, close to the critical point this may not
be the case, because then a significant amount of light is
scattered hence reducing the intensity of the light I, .
passing through. This can be simply formulated by
Lambert-Beer’s law

=Isexp(—7d) , (3.1

I trans

where 7 is the turbidity and d is the path length of the
light through the sample. I, and I, are determined ex-
perimentally (see Sec. III A), hence 7 can be deduced. On
the basis of an OZ ansatz, Puglielli and Ford [49] ob-
tained for the turbidity

= A'S(QH(K,E)

where A’ is a constant and the function H(y), where
k; =2mn /A, is given by

(3.2)

8y*+4y>+1
8yt

2y2+1

H(y)= 2

In(1+4y?)— (3.3)

Our experimental data of the turbidity = obtained by Eq.
(3.1) is adequately fitted by

r=Ae 1 2*H(1.82X10%7062) (3.4)

where A is a constant that is treated as a fit parameter.
Figure 2 shows a plot of 7 as a function of the reduced
temperature € using Eqgs. (3.2) and (3.3). The critical ex-
ponents are those from Table I.

The correction due to double scattering can be estimat-
ed via [27]
2

9 | S(@1—(1—R)rI],

3

where R is the double scattering correction and [ is the
path length of the scattered beam [2/=d in Eq. (3.1)].
In the basis of our experimental result for 7 we can esti-
mate by interpolation from data by Shanks and Sengers
[50] for e=10"3 a value of R =0.04. Inserting this value
into Eq. (3.5) shows that no multiple scattering correction
is needed. What is left is the comparison with our previ-
ously published data [18]. There we had found 7=2.5%

I=1I, (3.5)
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0.4
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T {cm']]
a

0.1t

0.06

0.001 0.01

FIG. 2. The measured turbidity 7 according to Eq. (3.1) as a
function of reduced temperature ¢(M). The full line is a fit of
Eq. (3.4) to the data with free parameter A.

for g§=1, which is for A=633 nm and 6=90° at
~Ine= —2. In this study we find for the same value of ¢,
7=8.5% taking into account the differences in the path
lengths by a factor of 2. Correcting for the different
wavelengths (here 488 nm) we find 7=3%. The remain-
ing uncertainty may be related to the error in determin-
ing T, in the previous study. Hence both samples are
comparable.

2. The static structure factor

The static structure factor S(q) is obtained from the
angular dependent I(q) by
I(QAPN R

S(q)= )
Irefnrcf47T (nA _nB) Mmon

(3.6)

where ref means reference sample (= toluene, see Sec.
IITA), A is the probing wavelength, p= ¢ApA+¢BpB,

and n is the index of refraction. M_  =¢ M
120+ S
00 -
1 e e . o
<~ 80 el ¥
£ - " )é%
= 60F o g
T 0 e A //j/;#/
L Pl —
M> o‘j}/’//;i///{j; =
20+ ‘%/

00 02 04 06 08 10 12 14 1.6
0.001 q2 [pm'z]

FIG. 3. The reciprocal Rayleigh ratio versus the square of
the momentum transfer for various temperatures according to
Eq. (2.7). From the bottom to the top 77=302.17 K (%),
T'=302.31 K (M), T=302.46 K (x), T=302.86 K (+),
T=303.16 K (#), T=304.16 K (®). The critical temperature
is T=301.90 K.
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+¢pyM2E . Since we report data only in the vicinity of
T,, no corrections for a background due to density fluc-
tuations were undertaken which are typically four orders
of magnitude smaller. In Ref. [18] we had reported data
yielding Rayleigh ratios down to =100 cm™!. In Fig. 3
we show R, '(q) < S(q)~! vs g% based on an OZ approxi-
mation [cf. Eq. (2.7)] for our data which go below 10
cm ! close to T, which is one order of magnitude higher
scattering intensity than we had previously due to a
smaller € we have reached here. In our case
Emin=8X 1074 in the previous paper [18] Emin=5X1073
which gives an order of magnitude in S(q). As one can
see from Fig. 3, the OZ theory gives a good representa-
tion of the data as expected [26].

3. The Rayleigh linewidth [51]

The desired correlation function of the scattered elec-
tric field g(q,¢) is related to the measured intensity time
correlation function G(q,¢) through the Siegert relation

G(q,t)=(I(q))*1+fa?lg(q,t)|*],

where (I(q)) is the mean intensity, f is an instrumental
factor, and a is the fraction of the totally scattered inten-
sity I(q) arising from concentration fluctuations. g(q,?)
is identified as the concentration autocorrelation func-
tion, which is further given by

S(q,t)
S(q) ’

where S(q,?) is the dynamic structure factor and S(q) is
given by Eq. (3.6) and Eq. (2.5) subsequently. The time
evolution of S(q,?) is given by

S(q,t)=S(q,t=0)exp(—TI't) (3.9)

with I" being the Rayleigh linewidth. It is related to the
mutual diffusion coefficient D, by

r=D.q?.

(3.7)

glq,t)= (3.8)

(3.10)

As has been discussed elsewhere [18], the Rayleigh
linewidth T" has to be composed into a critical part T',
and a background part I'p,

I=TI,+T, . (3.11)

However, the background contributions (not to be con-
fused with the background due to density fluctuations)
are, as has been shown [18], for polymer blends for values
of £ <0.01 already small (less than 10% on the basis of
Fig. 13 in Ref. [18]). Furthermore, the difference be-
comes progressively large since I', <€” and 'y xe¥. We
will study dynamical effects entirely in the strong fluctua-
tion limit, starting at ~g<7X 1073, estimated on the
basis of the crossover analysis (see Sec. IV). For the
latter € value the ratio of I', /T can be estimated to be
20. In the region where the determination of 7 was per-
formed (see Secs. IV and II A) the difference is typically a
factor of 50 (at e=1073), corresponding to an error of at
most 2%. Consequently, no background correction was
undertaken.

IV. STATIC PROPERTIES: RESULTS

It is well known that close to T, even polymer systems
are not mean field systems but behave like three-
dimensional Ising systems [9,10,13,14,16—18, 21,25]. The
criterion that separates these two cases is the Ginzburg
criterion [52-54]. However, unless a proper crossover
function was introduced [20], the data had been analyzed
in the two extremes, thereby force fitting the temperature
dependence of the susceptibility to the mean field ex-
ponent ¥ =1 by choosing the proper mean field critical
temperature [24]. We know [20,24], that applying the
crossover function by Belyakov and Kiselev [22] leads to
a more appropriate data description and leads to a reli-
able determination of the Ginzburg number Gi which
tells us when fluctuation effects are dominant. This is
equivalent with the region where the polymer topology is
unimportant since the correlation length of order param-
eter fluctuations, largely exceeds the coil dimensions. We
shall first try, on the basis of the crossover analysis, to
clearly find the region € < Gi.

The crossover function we use is an explicit solution to
first order in the perturbation parameter e=4—d (d be-
ing dimensionality) based upon a renormalization group
analysis. It reads

£=[1+2.3335(0)2/7|r—1/A
X {§710)+[1+2.3335(0)2/7]77/4) @

with €=¢/Gi and §(0)=a,S(0)Gi. a, is defined later,
Gi is the Ginzburg number. The critical exponents are
those for the three-dimensional (3D) Ising case y =1.24
and A=0.51, where the latter exponent determines the
correction to first order to the power laws that describe
the singularities at 7. [55]. The constant a, is given by
the amplitude of the squared term of the order parameter
P(r)=¢(r)— ¢, in the Landau-Ginzburg-Wilson formula-
tion of the free energy AF for a second order phase tran-
sition

AF__ 3 1 ' 2 i 4 .._1_ 2
—ﬁ——fvd r | S aoe Yr P+ ruoh(n)*+ o[ Viir) ]

(4.2)

with €' being the reduced temperature (with the mean
field T,). a, can be expressed in quantities of the random
phase approximation to be {16]

ag=(N V46 4) '+ (NgVpdp) '—2xz V!, 4.3)

Here V; are the monomer volumes and V=(V V)2
X g is reminiscent of the Flory-Huggins lattice model as it
is given by the entropic contribution of the Flory-
Huggins x parameter Y=x 4,/T +Xxp. For a discussion
see, e.g., Ref. [15]. The Ginzburg number Gi is defined in
the light of the coefficients appearing in Eq. (4.2) to be
[22,23,25]

2

L .4
N?

2 2 ( =
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&

where £, is the bare correlation length which must be
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consistent with c,=ay£3. The value of Gi controls the
crossover such that for € <<Gi, Ising behavior for the
susceptibility is observed and mean field behavior is ob-
served for € >>Gi. This has already been shown for a
great variety of binary blends with vastly differing de-
grees of polymerization [20,24]. From a fit of Eq. (4.1) to
our corrected susceptibility data (for corrections, see Sec.
III B) shown in Fig. 4 the parameters Gi and a are ob-
tained. The value for Gi amounts to Gi=6.88X 1073,
This value is in good agreement with values of Gi as ob-
tained from various other systems [24]. In Fig. 4 the fat
symbols belong to € < Gi, the shallow ones to € > Gi since
the crossover naturally occurs at Gi=¢. Only data for
T < T(Gi) will be used for the following scaling analysis.
The numerical value for Gi corresponds to a T width of
T(Gi)—T,=2.1 K. At T(Gi), the correlation length £ is
in the order of 300 A, which is roughly one order of mag-
nitude larger than the coil dimensions, so definitely the
polymeric nature of the system is lost with respect to the
magnitude of the order parameter fluctuations. Having
established now the 3D Ising regime, the strong fluctua-
tion limit, we perform fits of S(0) and &, as obtained via
Eq. (2.7), following Egs. (2.6) and (2.4), respectively. The
result for S(0)=S,e~ 7 is shown in Fig. 5, the result for
£=¢£y,e” v is shown in Fig. 6. The resulting parameters
for y and v are listed in Table I. The obtained value for
£,=14.9 A is in agreement with data published recently
[24] on the basis of the N scaling of §,. Furthermore, we
get for S a value of S;=35.7. After conversion into the
units as given in Ref. [24] (there S, is named C ) we ob-
tain C*=2940 cm’/mol which is in reasonable agree-
ment with the reported values there on the basis of the N
scaling of C*. The value of the critical temperature T,
was also found to be consistently T, =(301.90£0.01) K
both from Fig. 5 and Fig. 6 in a first run allowing for
three free parameters in fitting Egs. (2.4) and (2.6), re-
spectively. Then subsequently, the T, was fixed and the
fits shown in Figs. 5 and 6 were obtained, the exponents
shown in Table I.

Since we are in a regime for which € <<Gi, and hence
the 3D Ising universality class is obeyed, we may further

100

Slau.]

10}

0.001 0.01 0.1

FIG. 4. The static susceptibility S(0) as a function of the re-
duced temperature €. The full curve is a fit of Eq. (4.1) to the
data. Full points (M) are for € <Gi, shallow points (O0) for
€> Gi. Fit parameters are @y and Gi. The critical temperature
is obtained (consistently) from scaling fits of £ and S(0) accord-
ing to Egs. (2.4) and (2.6), respectively, only in the vicinity of T,.
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100
x10°®

0.001 0.01
€

FIG. 5. Double logarithmic plot of S(0)=35.7X¢g~!-2¢%0.02
according to Eq. (2.6) in the range € < Gi according to the cross-
over fit presented in Fig. 4.

determine the critical exponent 1 [see Eq. (2.2)], which
describes the decay of correlation at 7,. As already stat-
ed (Sec. II), if g& is not too large [26], the OZ ansatz is
still useful, we may write formally

£25(0)71=57 &g =const X £” 4.5)

thereby using the hyperscaling relation (2—n)v=y [56].
Thus, a plot of £25(0) ™! versus £ should yield the critical
exponent 7, which is shown in Fig. 7. We obtain a value
7=0.036-£0.002 which is in agreement with the theoreti-
cal value listed in Table I. A similar procedure was per-
formed by JanBen, Schwahn, and Springer [14], however,
they obtained 7=0.0471+0.004, which exceeds the
theoretical value. This seems to be a typical finding for
results obtained from neutron scattering, as was argued
by Chang, Burstyn, and Sengers [27]. Not only must g&
be large to get the true asymptotic form of the structure
factor but also should g be small enough so that the short
range order is not seen. In Eq. (2.2) the conditions are
T=T, and r large, a fact that is better fulfilled by light
scattering (almost one decade smaller ¢) than with neu-
trons. The experimental facts so far have been summa-
rized by Schwahn, Belkoura, and Woermann [57]. Our
above presented analysis (Fig. 7) uses the fact that for
light scattering g is much smaller and although the g&
range here and in Ref. [14] is almost equal we obtain a
more satisfying result.

200
100} ==
=_
= T
np B
0.001 0.005 0.0

€

FIOG. 6. Double logarithmic plot of £=14.9X g ~%62300! with
£ in A according to Eq. (2.4) in the range € < Gi (see also Fig. 5).
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2.4

%S [nm’]

50 £ [nm] 100

FIG. 7. Double logarithmic plot of £25~!(0) versus £ for
€ <Gi. The straight line has the slope 7=0.036+0.002 accord-
ing to Eq. (4.5).

One final comment needs to be added concerning the
question whether the condition T=T, in Eq. (2.2) needs
further clarification. One might argue that although we
analyze our data only for € < Gi the critical exponent for
susceptibility is not entirely given by the value for y as
listed in Table I, because there is a crossover which is
specific for polymer systems and what is seen instead is
an effective susceptibility exponent 7 .;=0dlogS '(0)/
dlog€ as derived from Eq. (4.1). However, for e=Gi we
find y.£=1.232 (Fig. 7 of Ref. [23]), hence the difference
between ¥ .4 and ¥ from Table I is in the order of the er-
ror in determining 7. Furthermore, crossover in S(0)
and £ look the same [18,25], so that the hyperscaling rela-
tion may be used throughout for € <Gi. Deutsch and
Binder [25] have argued that the crossover in the order
parameter with critical exponent B[¥(r)=1|e|?] may
differ from those in S(0) and £&. However, that is experi-
mentally a difficult but challenging task. In summary,
the analysis presented above is, to our knowledge, the
first determination of 7 from a polymer blend in agree-
ment with theoretical predictions for the 3D Ising univer-
sality class.

V. DYNAMIC PROPERTIES: RESULTS

As already outlined in Sec. II B, we will concentrate
only on the region where mode coupling effects occur.
Reading from Fig. 1 that is given by £/R, > N2, hence
for e <Gi. In this region it is found [cf. Eq. (2.11)] that
I'(q)=(g&)®. However, a crossover is associated with
any line drawn in Fig. 1, so that basically we may write

(T)

I(q,T)cqg ™ | (5.1)

where the value of z 4 for T=T, is given by Eq. (2.13).
In Fig. 8, we show z plotted versus 7—17, and get a
value of z by linear extrapolation for T-—T7, being
z=3.06%0.03. According to Eq. (2.13), this is in agree-
ment with the theoretical value [45] for x, =0.065 and in
accord with other experimental findings [44].

Solving the linearized hydrodynamic equations of a
binary liquid lead to five hydrodynamic modes [58]: four
diffusive ones and a propagating one (Brillouin). The
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FIG. 8. Plot of z.4, as obtained from the angular dependence
of the Rayleigh linewidth according to Eq. (5.1) versus the tem-
perature difference T—T7,. From a linear extrapolation toward
T., the exponent z=13.06£0.03 is obtained.

diffusive modes consist of a thermal diffusion mode, a
concentration diffusion mode, and a viscous relaxation
mode for the two transverse components of the momen-
tum density. All three modes are characterized by
respective diffusion constants. D; for the thermal
diffusion (heat transport), D, for the concentration
diffusions, also called mutual or interdiffusion, cf. Eq.
(3.10) (mass transport), and D,, the viscous diffusion con-
stant (momentum transport). They are connected to
specific transport coefficients via

A
Dp=—=, (5.2a)
Cp
Ay
— ) 5.2b
¢ S(q) ( )
D=1 (5.2¢)
Xp

Ay is the thermal conductivity, C, is the constant pres-
sure specific heat, A is identified by Eq. (2.9) together
with Eq. (3.10), S(q) is given by Eq. (2.7), 7, is the shear
viscosity and X, is the susceptibility for the momentum
density. The transport coefficient of heat exhibits the fol-
lowing scaling law (for q—0):

Ar=AoE ", (5.3)

whereas the scaling law for 7, is given by Eq. (2.12).
Among the coefficients x,, x,, and 7 the relation [32]

X t+x,=4—d+nq (5.4)
holds. Hence we may predict the value of x; from our
data for x, (Fig. 8) and 7 (Fig. 7) to be x; =0.976. Con-
cerning the reliability of this result we may argue in the
same way here as we had discussed in the determination
of 7 (Sec. 1V).

For the mass transport coefficient, the Onsager
coefficient, the following scenario holds: Combining Egs.
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(3.10) and (2.9) we write for q=0,

r=Lso. (5.5)
q

Now, clearly if T'/q? does not depend on &, mode cou-

pling effects otherwise occur in the sense of nonlocal

diffusion as introduced by Perl an Ferrell [59], then one

easily shows, using the RPA formalism

-1, |

-1
T (5.6)

< (q%)

A=const X Lz
q

which is the large region in the right lower part of Fig. 1.
However, if mode coupling comes into play, then the
quantity T'/¢g? depends on & according to the arguments
thoroughly presented in Ref. [18]. Basically in the so-
called hydrodynamic regime (in Fig. 1 the region

2e")I'/g* = £~ ! and hence A « £ on the basis of Eq. (5.5)
because S(0) « £2 in that region. This has been observed
quantitatively and is well established [18]. What
remained to be established is the crossover form ¢2¢” to
q3evx’7. For that data close to T, is needed. Formally, if
we expand Eq. (2.11) for ¢g£>>1, then we obtain
I'/q3=const. < kT /6mn,. Inserting herein for n, Eq.
(2.12) we get for A[ < T, cf. Egs. (5.2b) and (5.5)]

A°"’IO§A

which is the regime q3evx" in Fig. 1 in the upper right
part. This crossover from Axg” to A« £ 7 is shown in
Fig. 9. We have plotted A versus € double logarithmical-
ly together with the two limiting slopes v=0.62 and
vx,=0.041. According to Fig. 1 the crossover occurs at
g§=1. On the basis of our g range used we have taken
an average value being at a £ of about 600 A to fulfill
g&=1. This value g£= is indicated by an arrow in Fig.
9. Although we have focused our attention only to the T’
range close to T, it is difficult to unambiguously extract
the value of vx, from the data. Figure 10 displays the
data for A for the smallest £( <1.5X1073). The straight
line is a fit to the data yielding vx, =0.058+0.011. This

X 21
Tlme n

(5.7

30

0.001 0.01

FIG. 9. The Onsager coefficient A versus the reduced tem-
perature. Shown is the crossover from g2e” to ¢ %€ (v=0. 62,
vx,=0.041) which occurs at g&=1 for £>R, VN and
(qR )"!'>v'N. This crossover means that we are already so
close to T, that I /g is constant, so only the (weak) divergence
of the viscosity is seen.
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FIG. 10. The Onsager coefficient A versus the reduced tem-

perature for g£>>1. Here we find A « g¢ 7 o ¢0-05840.01 which
is the slope of the straight line.

is higher than the theoretical
vx, =0.63X0.065=0.041.

Further, on the basis of Fig. 1 the crossover between
mean field and Ising is located where mode coupling
effects occur. We read from Fig. 1 that this should hap-
pen for §=R, V'N =650 A. This length corresponds to
e=3X1073. On the other hand, from our crossover
analysis (see Sec. IV) we obtain a Ginzburg temperature
of T(Gi)=304 K being e=7X 1073, The obtained agree-
ment is rather good bearing in mind that one degree less
T(Gi) is sufficient to almost match the two resulting ¢
values completely. So we conclude that within the errors
involved in our data, agreement with Binder [33] is ob-
tained on the basis of the evaluation of Gi with the cross-
over function formalism.

Furthermore, using the exponent x,, obtained by Fig.
7, we have fitted Eq. (2.15) to the data. For the deter-
mination of I'* [cf. Eq. (2.14)] the mixing rule for 7, has
been employed, which we had already used in Ref. [18].
The result is shown in Fig. 11. The agreement is similar-
ly better than what we have published previously [18].
However, if we use R =1.20 as is proposed by Siggia,
Halperin, and Hohenberg [45], the data shows a sys-
tematic discrepancy with respect to the theoretical curve.
This is in variance with the result by Miyashita and Nose

expectation for

FIG. 11. The scaled linewidth T'* according to Eq. (2.15)
versus x =g&. The dashed line is obtained using R =1.2 instead
of R =1.03 (full line). Clearly, the data is not compatible with
R=1.2.
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FIG. 12. The Rayleigh linewidth according to Eq. (3.9)
versus g. The straight line has a slope of 3+0.03.

[30] who found that for the polymer-solvent system the
data is compatible with R =1.20.

According to Fig. 1 we may observe for
§>Rg\/N >650 A the crossover from q4sm” to q3evx’7
or to put it easier from a g* to a q* scaling of T for
(gR, )"!'>V'N. In order to check this we choose a tem-
perature very close to T, namely T —T,=0.24 K, where
£>2000 A. The obtained variation in g allows for a vari-
ation in (gR,)™' to be (gR,)p=0.15>N"1"2
=0.06> (gR, ) in=0.03. According to this, we should
be able to see a crossover from ¢° to g* for large g. The
result is shown in Fig. 12, where the rate is plotted versus
q. The straight line has a slope of z=3.00=%0.03, which
means that we do not see any crossover. We offer the fol-
lowing explanation for this finding: One might argue that
the prefactors determining the exact numerical values are
usually omitted in Fig. 1, so that basically we are not in
the proper range of (ng)“l. However, on the other
hand, a scaling T" « g“c® without mode coupling is exactly
what is predicted by Eq. (2.10), which is basically the
behavior of the nonmode coupled background which
shows a critical slowing down according to van Hove
theory. This is hidden in our data in the background
which has been extensively argued about in Ref. [18], and
which has not been corrected for here (see Sec. III B).
The line of argumentation should be reversed: The exper-
imental finding that Fig. 12 shows a clear I' < g> behavior
in the whole g range investigated, is a strong indication
for the neglecting of any background contributions so
close to T.. Hence, according to Eq. (3.11), ', =T is a
very good approximation. For &€ <<Gi mode coupling
occurs throughout, and consequently the background
contributions are only possible to detect for extremely
large g, possibly not accessible by light scattering.

VI. DISCUSSION

As already addressed in the introduction we are mainly
concerned with two questions: First, to what extent are
binary blends and polymer-solvent systems comparable
with respect to their critical behavior and second, to
which universality class in the sense of Hohenberg and
Halperin (HH) [32] do binary polymer blends belong?
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Let us first discuss the latter question.

Concerning this item, Tanaka [31] has raised consider-
able questions, especially with respect to the coupling of
order parameter fluctuations and viscoelastic forces.
Classical fluids including binary liquid mixtures and sim-
ple fluids belong to the model H of HH. The kinetic
equations for binary liquid mixture are given by [58]

SF

9 _ _ 28F

3t V(¢v)+LyV 56 +w 6.1)
and the Navier-Stokes equation

p%‘t’—=—vn—vP1+nSV2v+g. (6.2)

Here ¢ and v are the concentration and velocity fields, re-
spectively, and II is the stress tensor caused only by the
fluctuations of ¢. p is the density, p, is a part of the pres-
sure and 7), is the viscosity. ¥ and § are random forces.
F is given by Eq. (4.2). Newtonian fluids are adequately
described by these basic hydrodynamic equations (mass
and momentum conservation). However, they are only
valid on time scales larger than any characteristic viscoe-
lastic time of the system [31]. That may be complex
internal degrees of freedom (i.e., disentanglement time) or
the glass transition phenomena. That leads to substantial
changes in Egs. (6.1) and (6.2), such that, according to
Doi and Onuki [60], a stress tensor (Vo ™) has to be add-
ed, which means that the motion of a polymer relative to
the solvent is driven not only by the gradient of the
osmotic pressure [cf. Eq. (6.2)] but also by the gradient of
the network stress o'”. We make the assumption that
this may also hold if dynamically one polymer has a vast-
ly different glass transition than the other, so that the fas-
ter one may be treated as a solvent. The network stress
arises from the point that the stress in polymer systems is
supported by the structure and thus a gradient in o'
causes a net force on the chains leading to a motion of
chains relative to the solvent.

That is what is meant with coupling between order pa-
rameter fluctuations and viscoelastic forces. Via a consti-
tutive equation [61]

o= fiwdt’G(t~t')K,-j(p)dt’ ) (6.3)

where k;; is the shear rate and G () is the shear relaxation

modules, we can further relate G (#) to the viscosity

M, < fo""Gmdt . (6.4)

We see directly that the viscosity behavior is likely a sen-
sitive sensor for any deviations from the model H of HH.
For our particular system here, this seems not to be im-
portant. According to Tanaka [31], we may estimate the
ratio between 7,/7,, the ratio between the decay time of
fluctuations 7, and the characteristic rheological time 7,
to be 7./7, =N1/2¢73/2 being always larger than one.
That means, in our systems the order parameter fluctua-
tion are always the slowest relaxing variable close to T.
Dynamic asymmetry in polymer blends are not as impor-
tant as glass transition phenomena, so our system
behaves ‘“ideally” in the sense of model H of HH. Conse-
quently, all scaling parameters are in accord with theory,
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especially the most crucial one, the viscosity divergence,
although an exact theory, which relates the occurrence of
viscoelastic coupling to the extent to which viscosity scal-
ing exponents are reformulated, is not known to us. In
the following we may add some speculations, which are
not supported theoretically, but we find them interesting
to report.

The above arguments may be further supported by a
recent study on the interdiffusion dynamics in a PDMS-
PEMS blend [62], where it has been found that the con-
centration dependence of the interdiffusion coefficient fol-
lows the so-called fast mode approach which allows for
different diffuse segment fluxes in a sense of a Hartley-
Crank type of equation [63]. It is contrasted to the slow
mode ansatz which may be derived under the condition
of microscopic compressibility as it may describe the
interdiffusion of two solids with infinite viscosity. A
theoretical approach by Akcasu, Naegele, and Klein [64]
allows one to interpolate between both cases by varying
the compressibility of the system, i.e., the distance from
the glass transition, where then coupling effects in the
sense of Tanaka may occur if the 7, of the system is
chosen properly. Interestingly, now that the
interdiffusion in PS-PPMS [poly(styrene)-poly(phenyl-
methylsitoxane)] was found to follow the slow mode [51],
where indeed glass transition effects occur. In this latter
system the (PS) component exhibits a glass transition
close to the region of measurement.

We may further note that the reported anomaly [24] of
the Ginzburg number as a function of N, namely an
unpredicted overshoot of the 7' (Gi)-7, difference as com-
pared with other systems (cf. Ref. [24]) is entirely due to
PS-PPMS systems. For the other systems studied, it can
be easily shown that glass transition effects are negligible.
From all that we speculate: It is usually a polymeric
component involved (PS) exhibiting a relatively high glass
point so that kinetic coupling with the order parameter
fluctuations may occur. However, that has to be quanti-
tatively proven in any particular case and is a task for fu-
ture work. We have to come back to our very first ques-
tion concerning the comparison between blends and
polymer-solvent systems. The possible equivalency be-
tween binary blends and polymer-solvent systems is
doubted intuitively, because a main assumption in blends
is the validity of the so-called Gaussian approximation
[65]. This is entirely different in dilute solutions and con-
centrated solutions because there the excluded volume
effects have to be properly taken into account. The
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Gaussian assumption, on the other hand, is only valid for
a small excluded volume or high concentrations, possibly
melts.

The viscosity behavior of polymer-solvent systems has
been exemplarily studied in Ref. [30]. There R =1.2 in
Eq. (2.15) was found to adequately describe the linewidth
data. Miyashita and Nose [30] state that the theoretical
value of R =1.20 is intuitively more acceptable, since the
diffusion coefficient would satisfy a Stokes-Einstein
diffusion law with prefactor 1.2 /67 =1/57 in accordance
with Stokes’s law for a spherical droplet with radius &
moving in a medium with the same viscosity as that of a
liquid droplet. However, that numerical prefactor 1/57
was not confined by the vast majority of experiments [66].
We speculate that in Ref. [30] the value of 7, entering the
expression for the scaled linewidth, in analogy to Eq.
(2.15), was calculated using improper assumptions, i.e., a
wrong mixing rule for the solution viscosity. Further, we
note that in polymer-solvent systems the proper deter-
mination of the background causes considerable problems
[67] which makes it difficult to distinguish unambiguous-
ly between the two R values [30,68].

Finally, the usual agreement between blends and
polymer-solvent systems with respect to the universality
class is doubted mainly on the basis of viscosity data (cf.
Ref. [28]). Usually, the critical exponents for solutions
are renormalized [69], however, we are not aware of any
study that has a close look for the viscosity exponent.
Clearly the form of the free energy AF via Eq. (4.2) is not
valid for solutions. Thus it is not clear what free energy
functional will enter Eq. (6.1) and its modifications to
transient network stresses, i.e., for concentrations beyond
the overlap concentration. It is further not known to
what extent then the scaling theoretical of the viscosity
may be described. There is need for theoretical work in
as much experiments [28] show clear deviation from
model H of HH.

We conclude the following:

(1) In the absence of viscoelastic couplings [31], binary
polymer blends belong to the universality class H of
Hohenberg and Halperin.

(2) This is contrasted to polymer-solvent systems on
the basis of the viscosity scaling behavior.
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